Symmetric alternating sign matrices

نویسندگان

  • Richard A. Brualdi
  • Hwa Kyung Kim
چکیده

In this note we consider completions of n×n symmetric (0,−1)-matrices to symmetric alternating sign matrices by replacing certain 0s with +1s. In particular, we prove that any n×n symmetric (0,−1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with +1s can be completed to a symmetric alternating sign matrix. Similarly, any n × n symmetric (0,+1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with −1s can be completed to a symmetric alternating sign matrix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On refined enumerations of totally symmetric self-complementary plane partitions II

In this paper we settle a weak version of a conjecture (i.e. Conjecture 6) by Mills, Robbins and Rumsey in the paper “Self-complementary totally symmetric plane partitions” J. Combin. Theory Ser. A 42, 277–292. In other words we show that the number of shifted plane partitions invariant under the involution γ is equal to the number of alternating sign matrices invariant under the vertical flip....

متن کامل

The quantum symmetric XXZ chain at ∆ = − 12 , alternating sign matrices and plane partitions

We consider the groundstate wavefunction of the quantum symmetric antifer-romagnetic XXZ chain with open and twisted boundary conditions at ∆ = − 1 2 , along with the groundstate wavefunction of the corresponding O(n) loop model at n = 1. Based on exact results for finite-size systems, sums involving the wavefunc-tion components, and in some cases the largest component itself, are conjectured t...

متن کامل

The Poset Perspective on Alternating Sign Matrices

Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or −1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We put ASMs into a larger context by studying the order ideals of subposets of a certain poset, proving that they are in bijection with a variety of interesting combinatorial objects, including ASMs, totally symmetric self–complementary plane...

متن کامل

A Connection between Alternating Sign Matrices and Totally Symmetric Self-Complementary Plane Partitions

We give a lattice path interpretation for totally symmetric self-complementary plane partitions. This is a first step in solving the long standing problem of enumerating such plane partitions. Another outstanding problem in enumerative combinatorics is the search for a bijection between alternating sign matrices and totally symmetric self-complementary plane partitions. From the lattice path in...

متن کامل

Enumeration of Symmetry Classes of Alternating Sign Matrices and Characters of Classical Groups

An alternating sign matrix is a square matrix with entries 1, 0 and −1 such that the sum of the entries in each row and each column is equal to 1 and the nonzero entries alternate in sign along each row and each column. To some of the symmetry classes of alternating sign matrices and their variations, G. Kuperberg associate square ice models with appropriate boundary conditions, and give determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2014